New solar indices for improved thermospheric densities

COSPAR 2006 Session C4.1
Paper COSPAR2006-A-01661

July 18, 2006

W. Kent Tobiska

Overview

Solar proxies for thermospheric density modeling (JB2006)

- comparisons with previous models
- solar proxy selection and development

Solar and geomagnetic forecasts

 Integrated solar irradiances proxies – F10, S10, Mg10

Historical Density Model Errors at 350 km (1-σ)

00011 Vanguard 2 Sphere - DB/Bave Values - 560 km

http://sol.spacenvironment.net/~jb2006/

Jacchia-Bowman 2006 thermospheric density model

- Motivation: significantly reduce 1-σ error
- Improvements
 - 1) uses the CIRA72 (Jacchia 71) model diffusion equations
 - new solar indices in the extreme and far ultraviolet wavelengths
 - 3) new exospheric temperature and semiannual density equations
 - temperature correction equations for diurnal and latitudinal effects
 - 5) density correction factors at high altitude (1500- 4000 km)
- Bowman, Tobiska, and Marcos, AIAA-2006-6166

Jacchia-Bowman 2006

- JB2006 is validated through comparisons of accurate daily density drag data that are previously computed for numerous satellites
- For the 400 km altitude, the Jacchia 1971 16% standard deviation is reduced to 10% during periods of low geomagnetic storm activity

Motivation for new solar indices ... capture maximum UV absorption, including SRC in FUV

Altitude of unit optical depth for UV absorption

Integrated irradiance indices

Solar index candidates

Index	ISO 21348 Spectral	ISO 21348 Spectral	Wavelength range (nm)	Solar source temperature	Solar source feature	Atmosphere absorption (unit	Atmosphere absorption
	category	sub- category	range (nim)	region	icature	optical depth, km)	(thermal region)
$X_{\rm hf}$	X-rays	X-rays	0.1-0.8	Hot corona	Flare	70-90	Mesosphere
X_{b10}	X-rays	X-rays	0.1-0.8	Corona	Active region background	70-90	Mesosphere
$XE_{10.7}$	X-rays and UV	XUV+EUV	1-40	Chromosphere, corona	Active region	90-200	Lower, mid thermosphere
$E_{10.7}$	X-rays and ultraviolet	XUV+EUV	1-105	Chromosphere, corona	Active region	90-500	Thermosphere
*F _{10.7}	Radio	Radio	10.7E7	Transition region, cool corona	Active region	90-500	Thermosphere
$*S_{EUV}$	UV	EUV	26-34	Chromosphere, corona	Active region, plage, network	200-300	Thermosphere
$XL_{10.7}$	X-rays and UV	X-rays+H Lyman-α	0.1-0.8,121	Chromosphere, transition region, corona	Active region background, plage, network	70-90	Mesosphere
H Lya	UV	H Lyman-α	121	Transition region, chromosphere	Active region, plage, network	70-90	Mesosphere
E_{SRC0}	UV	FUV	125-175	Photosphere, chromosphere	Plage and network	90-125	Mesosphere, lower thermosphere
E_{SRC1}	UV	FUV	151-152	Chromosphere	Plage and network	125	Lower thermosphere
E_{SRC2}	UV	FUV	144-145	Chromosphere	Plage and network	125	Lower thermosphere
$E_{SRC3} = E_{SRC}$	UV	FUV	145-165	Photosphere, chromosphere	Plage and network	125	Lower thermosphere
$*Mg_{10}$	UV	MUV	280	Chromosphere	Active region	20	Stratosphere
E_{SRB}	UV	FUV+MUV	175-205	Photosphere	Plage and network	50-70	Mesosphere
E_{HRT}	UV	MUV	245-254	Photosphere	Network	25	Stratosphere

10

Solar index selections

Index	ISO 21348 Spectral category	ISO 21348 Spectral sub- category	Wavelength range (nm)	Solar source temperature region	Solar source feature	Atmosphere absorption (unit optical depth, km)	Atmosphere absorption (thermal region)
$X_{\rm hf}$	X-rays	X-rays	0.1-0.8	Hot corona	Flare	70-90	Mesosphere
X_{b10}	X-rays	X-rays	0.1-0.8	Corona	Active region background	70-90	Mesosphere
$XE_{10.7}$	X-rays and UV	XUV+EUV	1-40	Chromosphere, corona	Active region	90-200	Lower, mid thermosphere
$E_{10.7}$	X-rays and ultraviolet	XUV+EUV	1-105	Chromosphere, corona	Active region	90-500	Thermosphere
*F _{10.7}	Radio	Radio	10.7E7	Transition region, cool corona	Active region	90-500	Thermosphere
*S _{EUV}	UV	EUV	26-34	Chromosphere, corona	Active region, plage, network	200-300	Thermosphere
${ m XL}_{10.7}$	X-rays and UV	X-rays+H Lyman-α	0.1-0.8,121	Chromosphere, transition region, corona	Active region background, plage, network	70-90	Mesosphere
H Lya	UV	H Lyman-α	121	Transition region, chromosphere	Active region, plage, network	70-90	Mesosphere
E _{SRC0}	UV	FUV	125-175	Photosphere, chromosphere	Plage and network	90-125	Mesosphere, lower thermosphere
E_{SRC1}	UV	FUV	151-152	Chromosphere	Plage and network	125	Lower thermosphere
E_{SRC2}	UV	FUV	144-145	Chromosphere	Plage and network	125	Lower thermosphere
$E_{SRC3} = E_{SRC}$	UV	FUV	145-165	Photosphere, chromosphere	Plage and network	125	Lower thermosphere
*Mg ₁₀	UV	MUV	280	Chromosphere	Active region	20	Stratosphere
E_{SRB}	UV	FUV+MUV	175-205	Photosphere	Plage and network	50-70	Mesosphere
E_{HRT}	UV	MUV	245-254	Photosphere	Network	25	Stratosphere

Solar index characteristics

Index	Observing facility	Instrument	Observation time frame	Measurement cadence	Measurement latency	Operational availability
F _{10.7}	Penticton ground	Radio telescope	1947-2005	3 times/day	Up to 24 hours	yes
	observatory					
S_{EUV}	SOHO	SEM	1996-2005	15-second	Up to 24 hours	(a)
$XL_{10.7}$	GOES-12, UARS,	XRS, SOLSTICE	1991-2005	1-minute, 16	Up to 10 minutes, up	(b)
	SORCE, TIMED	(2), SEE		times/day	to 48 hours	
E_{SRC}	UARS, SORCE	SOLSTICE (2)	1991-2005	16 times/day	Up to 48i hours	(c)
Mg_{10}	NOAA-16,17	SBUV	1991-2005	2 times/day	Up to 24 hours	yes
E_{HRT}	UARS, SORCE	SOLSTICE (2)	1991-2005	16 times/day	Up to 48 hours	(c)

⁽a) SOHO is a NASA research satellite but provides daily irradiances on an operational measurement cadence.

⁽b) GOES XRS is a NO AA operational instrument whereas TIMED/SEE and SORCE/SOLSTICE are NASA research satellites providing daily irradiances on an operational measurement cadence.

⁽c) UARS/SOLSTICE is no longer active; SORCE/SOLSTICE is intended to provide data for several years.

Solar index selection - F10

♦ F_{10.7}

- the traditional coronal solar energy proxy in units of sfu
- represents XUV-EUV broadband
- $-\tau > 180 \text{ km}$
- 13% of thermospheric response comes from F_{10.7}
- provided by Penticton
- we use the observed archival daily values, with a 1-day lag, over the common time frame of January 1, 1996 – June 12, 2005
- make a running 81-day centered smoothed set of values (F₈₁)
- we perform linear regression with daily F_{10.7} to scale and report all other solar indices in units of sfu

Solar index selection - S10

◆ S_{EUV}

- chromospheric index converted to sfu
- $-\tau > 180 \text{ km}$
- 75% of thermospheric response comes from this emission
- SOHO SEM instrument measures the 26–34 nm emission with 15sec time resolution; TIMED SEE has 96-min resolution
- SEM 26-34 nm irradiances are EUV line emissions dominated by the chromospheric 30.4 nm He II line from active regions & plage
- photons are absorbed mostly by atomic oxygen above 180 km
- the integrated 26–34 nm emission (SOHO_SEM26-34) is normalized by dividing the daily value by the common time frame mean value
- the normalized value is converted to sfu through linear regression with F10.7 over the common time frame
- resulting index is called S10 with a 1-day lag

Solar index selection - Mg10

◆ E_{SRC}

- solar FUV Schumann-Runge Continuum (SRC) contains emission between 125–175 nm from the photosphere and lower chromosphere
- FUV near 145-165 nm is center of SRC; photospheric proxy (sfu)
- $-100 < \tau < 125 \text{ km}$
- 12% of thermospheric response comes from these emissions
- solar energy is deposited in the terrestrial mesosphere and lower thermosphere (80–125 km) primarily through the energy released from the dissociation of molecular oxygen
- we integrate the daily SOLSTICE 145–165 nm emission and created a normalized value
- divide the daily value by the common time frame mean value
- perform linear regression with F_{10.7} to report the index in sfu
- E_{SRC} is used with a 5-day lag but IS NOT operationally available

Steps to create Mg₁₀

- a substitute for E_{SRC} is needed and we use Mg II in sfu
- our analysis has found that it represents very well the photospheric and lower chromospheric solar FUV Schumann-Runge Continuum emission (E_{SRC})
- we created a new composite Lyman-alpha from UARS & SORCE SOLSTICE data by scaling each dataset to 365-day smoothed F10.7 to establish the long-term trend
- Next, we scaled the Mg II from NOAA 16 SBUV instrument to the new composite Lyman-alpha
- we created a function to scale Mg II beyond the research data (after July 2005)
- we created a modified Mg II by linear regression with F_{10.7} and report as Mg₁₀
- Mg II is operationally provided by NOAA 16,17 SBUV and SORCE SOLSTICE

Solar indices tested

$$\begin{array}{lll} Tc = a_0 + a_1 \overline{F}_{10.7} & 10.7 \ cm - Cool \ Corona/TR \ Proxy \\ & + a_{i+1} \Delta F_{10.7} & 280 \ nm - Chromosphere \ Proxy \\ & + a_{i+2} \Delta MgII & 280 \ nm - Chromosphere \ Proxy \\ & + a_{i+3} \Delta E_{10} & SOLAR2000 - F_{10.7} + MgII \\ & + a_{i+4} \Delta XE_{10} & SOLAR2000 - EUV \ 1-40 \ nm \\ & + a_{i+5} \Delta XB_{10} & SOLAR2000 - XUV \ Background \ Xray \\ & + a_{i+6} \Delta Ly \acute{a} & SOLAR2000 - Lyman-alpha \\ & + a_{i+7} \Delta S_{EUV} & SOHO \ EUV - Chromosphere \ 26-34 \ nm \\ & + a_{i+8} \Delta SRC & SRC \ Continuum - Lower \ chromosphere \\ & FUV \ 145-165 \ nm \\ & + a_{i+9} \Delta Hart & Hartley \ Bands - Photosphere \\ & MUV \ 245-254 \ nm \end{array}$$

Daily Density Data - 18 Sats

Ht (km)	1996-99	2000-04	Туре	Shape
175		26692	PAM-D	Spheriod
		25935	PAM-D	Spheriod
200	22781	22781	PAM-D	Spheriod
	06073	06073	Venus Lande	r Spheriod
250	22277	22277	PAM-D	Spheriod
	04053	04053	IntelSat 3	Cylinder
300	14694	14694	R/B	Cylinder
	08063	08063	R/B	Cylinder
350	02150	02150	OV3-1	Cylinder
	02389	02389	OV3-3	Cylinder
400	12388	12388	RadarCal	Sphere
	14483	14483	RadarCal	Sphere
	04382	04382	DFH-1	~Sphere
500				
	00011	00011	Vanguard 2	Sphere
600	00047	00047	R/B	Cylinder
700				
	02909	02909	Calsphere	Sphere
800	02826	02826	Calsphere	Sphere
1000	00900	00900	Calsphere	Sphere

Red	Low i	<35 Deg
Yellow	Mid i	~50 Deg
Green	Crit i	~63 Deg
Blue	High i	>70 Deg

Exospheric temperature

RMS (ΔTc K	$\Delta F_{10.7}$	$\Delta S_{10.7}$	$\Delta E_{ m SRC}$ (Δ	Mg _{10.7}) % Uncertainty reduce
19.9	1.405	_ /3	_	0
17.4	0.552		-	13
15.7	0.606	-	0.918	21
14.8	0.172	2.604	+	26
14.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.835		26
14.3		2.299	0.564	28
14.1	0.255	1.914	0.615	29
Lag	1 day	1 day	5 days	

- Analysis also performed for n-day centered averaged values and other indices
- All satellite data sets were used in Tc fits
- All coefficient values are in sfu
- $\Delta Mg_{10.7}$ was substituted for ΔE_{SRC} at a small penalty of uncertainty
- 29% uncertainty reduction due to solar (semi-annual improved separately)

$$Tc = 379.0 + 3.353 F_{81} + 0.358 \Delta F_{10.7} + 2.094 \Delta S_{10.7} + 0.343 \Delta Mg_{10.7}$$

Reduced error in JB2006

12388 DB/Bave Values (400 km) - 2001

SET's new operational indices

- Persistence and recurrence is achieved using linear prediction for S₁₀, Mg₁₀, F₁₀
- $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} \dots + \phi_P x_{t-P} + w_t$ (P is previous values to be used, t is number of values to forecast)
- Day 2 forecast is additionally adjusted using a modified slope algorithm (MSd2)

•	Time period	(type)	algorithm
	24 to 0 hours	(nowcast)	linear prediction (t = 3; P=3)
	 0 to 48 hours 	(forecast)	linear prediction (t = 3; P=3) + MSd2
	 48 to 96 hours 	(forecast)	linear prediction (t = 5; P=137)

2001 EOD forecast: 1-4 day F₁₀

2001 EOD forecast: 1-4 day S₁₀

2001 EOD forecast: 1-4 day Mg₁₀

Conclusions

New solar energy terms provide 60% of the improvement

- 29% uncertainty reduction in delta-exospheric temperatures, \(\Delta \text{Tc} \)
- Combined with semiannual, the uncertainty reduction is ~50%

Solar indices capture previously unmodeled energy

- Selection based on considerations of availability and simplicity
- 3 indices and proxies were selected
 - F_{10.7}, S_{10.7}, Mg_{10.7}
- 2 indices (XL_{10.7}, E_{SRC}) gave slight improvements but were not used

Lag analyses suggest bounded vertical transport velocities

- 1 day: O (200 km at unit optical depth driven by chromo. EUV)
- 5 days: N₂ (also O₂, O, NO at 125 km unit optical depth driven by chromo./photo. FUV SRC)
- 8 days: N₂ (also O₂, NO, H₂O at 80 km unit optical depth driven by chromo Lyα + coronal X-ray)
- n-days: N₂ (also O₂, O₃, H₂O, CO₂ at 25 km unit optical depth driven by photospheric Hartley Band not found to be significant)

Forecasts out to 96-hours

1 day: 98-99% correlation coefficients
 2 day: 95-96% correlation coefficients
 3 day: 89-91% correlation coefficients
 4 day: 63-68% correlation coefficients