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A Brief History of Global MHD
Simulations

1978 — First 2D simulations by Leboeuf et al.

Early 80s — First 3D simulations by Brecht, Lyon,
Wu and Ogino

Late 80s — Model refinements including FACs,
ionospheres, higher resolution

90s — ISTP 1integrates theory and modeling with
spacecraft missions and comparisons with in situ
space and ground observations begun

Today — Global modeling has become 1ntegrated
part of many experimental studies and we’ve
begun linking models of different regions together




Ideal MHD Equations

Non Conservative Formulation
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* No strict numerical conservation of energy and momentum
* Various numerical 1ssues
— Errors in propagating strong shocks

— Errors in RH Conditions
— Incorrect shock speeds




Ideal MHD Equations

Full Consegvative Formulation
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« Strict numerical conservation of mass, momentum and

energy
* Numerical difficulties in low {¥] regions

— negative pressures possible because p becomes difference of two
large numbers




Ideal MHD Equations

Gas Consearvative Formulation

« Strict numerical conservation of mass, momentum and
plasma energy I
— Final term in Energy equation is J - £ dotted with velocity
— no strict conservation of total energy

* No difficulties in low {¥] regions




Time Differencing

Explicit time differences

— Predictor — Corrector (2" order accurate)

U =U" —%AtVoF(U”)

U™ =U" —AtV-FU' 2)
— Leap Frog Scheme (2" order accurate)
U™ =U""-2AVe F(U",U"™)
Stability Criterion (CFL Condition)

Ar < min(A X)
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V

Implicit Schemes generally not used because
soloution of large linear systems becomes too
expensive




MHD Numerics

* Need a method to solve the conservative
formulation of the MHD equations which
maintains the conservation properties

 For this disucssion we’ll consider the linear
advcetion equation




Spatial Discretization

O ® O « State variables are cell
centered quantities and we
& discretize our model
I P W equation with numerical

O @ O fluxes through the cell
R interfaces
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Scheme 1s conservative
because
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Conservative Finite Difference Scheme




Donor Cell

A simple first order
algorithm

. . VAt
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e Maintains monotonic
solution

e Linear advection problem
clearly shows diffusive
character




Donor Cell

A simple first order
algorithm
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e Maintains monotonic
solution

e Linear advection problem
clearly shows diffusive
character




Second Order

A simple second order
algorithm

2nd Order

Does not maintain
monotonic solution

Introduces dispersion
errors as seen 1n linear
advection example




Second Order

A simple second order
algorithm

\WAVS
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Does not maintain
monotonic solution

Introduces dispersion

errors as seen in linear
advection example




Partial Interface Method

« Combines low order and

hlgh order fluxes
w4 YA VAt ( )
AX -1/2 +1/2

F,,= % (ul” +u, )+ Esign (ufﬂ —u; )>x<

n n n n
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e Limiter to keeps solution
monotonic

* Provides nonlinear
numeric resistivity and
VISCOSsIty




Partial Interface Method

« Combines low order and

hlgh order fluxes
w4 YA VAt ( )
AX -1/2 +1/2

F.,= (u +u+1)+ Slgn(u+1—u)

*max (O, u,, —u ‘—Bsi ‘ui _”HD

S, = %‘Sign (uf+1 —u; )+ sign(uf - %74—11

e Limiter to keeps solution
monotonic

* Provides nonlinear
numeric resistivity and
VISCOSIty




Treatment of the Magnetic Field

e Various approaches can be used to satisify the
constraint that (¥} {¥j;B=0

— Projection method
V¥ =-VeB
B'=B+VY¥Y

¥ji¥,B convection
* Modify the MHD equations so that B convects through

the system
d(VeB) _
dt

— Use a magnetic flux conservative scheme that keeps
¥ B=0

0




Magnetic Flux Conservative

Scheme

« Magnetic field placed on
center of cell faces

 Electric field 1s placed at — \>
center of cell edges so that

e

E o Ex(j+1/2,k+1/2)

o gy Sy }
{ Bx(i+1/2) 4.‘\
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Y
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» Cancellation occurs when < >

field components of all six

faces are summed up




Computation Grids

 Simulation boundaries should be 1n

supermagnetosonic flow regimes
— > 18 Re from Earth on Sunward side
— > 200 Re 1n tailward direction
— > 50 Re 1n transverse directions

* A variety of grid types exist with varying
degrees of complexity
— Uniformed Cartesian
Stretched Cartesian
Nested Cartesian
Regular Noncartesian
Irregular Noncartesian




 Uniformed Cartiesian Grid

— Low programming overhead

— Low computing overhead

— No memory overhead

— Easy parallelization

— Not very adaptable

o Stretched Cartesian Grid

— Low programming overhead

— Low computing overhead

— No memory overhead
— Easy parallelization

— Somewhat adaptable

« Example from Raeder UCLA
MHD Model




BATS-R-US

« Regular Noncartesian

Medium programming
overhead

Low memory overhead
small computing overhead

parallelizes like regular
cartesian grid

somewhat adaptable
* Example from LFM

 Nested Cartesian

Medium/High programming
overhead

Medium/High memory overhead
small computational overhead
difficult to parallelize

very (self) adaptable
* Example from BATS-R-US




Domain Decomposition
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ghost cells

e Computational Space 1s divided (evenly?)
amongst the CPUs available to work on the
problem

— MPI used to pass boundary information between ghost
cells at interfaces

— Can also use packages like MultiBlockParti and P++




Boundary Conditions

e Upstream

— Fixed or time dependent values for 8 plasma
parameters

e Can be 1dealized for derived from solar wind
observations

— Problem with By
 Need to know 3D structure of solar wind because

VeB=0&ne(B - B

up stream downstream

)=0
 Implies By=B, cannot change if solar parameters

are independent of Y and Z

* Find n direction with no variation and then sweep
these fronts across front boundary




Boundary Conditions II
 All other sides

— Free flow conditions for plasma and transverse
components of B

M _,

on

— normal component of B flows from

* Inner Boundary Condition
— MI Coupling module

— Hard wall boundary condition for normal
component of velocity and density




Magnetosphere-lonosphere
Coupling

e Inner boundary of MHD domain 1s placed between 2-4
R; from the Earth

High Alfven speeds in this region would impose strong limitations on
global step size

Physical reasonable since MHD not the correct description of the physics
occuring within this region

Covers the high latitude region of the ionosphere (45{¥}-90{¥))

e Parameters in MHD region are mapped along static dipole field
lines into the 1onosphere

* Field aligned currents (FACs) and precipitation parameters are
used to solve for 1onospheric potential which 1s mapped back to
inner boundary as boundary condition for flow

_(-VP)xB

=

\




« 2D
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° Conduct1v1ty Models

- Solar EUV 1onization

Creates day/night and winter/summer asymmetries

2 = 0.5F;>(cos y)*"
— 1 8F1/2
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~Auroral Precipitation

Empirical determination of energetic electron precipitation

COS ¥

V y<65°
vV y<65°




Auroral Precipitation Model

* Empirical relationships are used to convert MHD
parameters into an average energy and flux of the
precipitating electrons

— Initial flux and energy

. 2 _ 1/2
80 N acs ¢0 i ﬂ p 80
— Parallel Potential drops (Knight relationship)

1/2
_RJg,
& =

p ~&i
— Effects of geomagnetic field o= (8 7e7 ] V g >0

E=E + € &
p=g,e" Y g<0
— Hall and Pederson Conductance from electron precp (Hardy)
583/2¢1/2

7~ (1+0.0625¢ )

) ¥, =045""%




Pretty Picture Time
* A whole lot of coding later and you get

January 10
01:49:50




Methods of Model Validation

Conduct studies with same conditions and different
numerics

Computation of theoretical problems with known
analytic answers

— Provides a ground truth that code 1s working

— Very limited number of MHD problems
Direct comparison with observations

— Limited number of spacecraft observations
* Check general characteristics with superposed epoch studies

— Include comparison with indirect observations

— Use metrics to quantitatively asses validity




Effect of Numerics on Magnetosphere

e Simulation for Northward IMF with constant Pedersen Conductance
— Background color velocity with white magnetic field vectors
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« High Numerical Diffusion e Low Numerical Diffusion
— 8" Order — 8t Order

— No TVD Scheme _ Hich TVD Scheme




Effect of Numerics on Ionosphere

o Simulation for Northward IMF with constant Pedersen Conductance
— Background color FAC strength with potential contours overlaid

« High Numerical Diffusion e Low Numerical Diffusion
— 8™ Order — 8" Order

— No TVD Scheme




Energy loading and unloading

CANOPUS AL Simulation AL

—300

—400

03:00 04:00 05:00 08:00 07:00
UT of March 9

Both data and simulation show onset,
intensification, recovery, and second onset

Simulated onset 1s early, but intervals between
intensification and second onset are consistent

Simulated CL recovers faster than observations




Medium Skill Case 1

DMSP data-model comparison
a1398310.154

Raeder: 0.27
Ridley: 0.32
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More detail (Rice, Slinker) does not necessarily lead to higher skill,
although it is desirable

59000




Comparison with geostationary
observations

* Excellent agreement for

all three components of
B

* Despite global B,
offset dipolarizations of
similar size are seen 1n
simulation results for

both GOES 8 & 9

— May imply limited role
for ring current in
substorms




Flow Channels




Comparison between
Flow channels and BBFs

INNER CPS FLOWS

* Flow channels have 4l Tl T
properties similar to BBF P |
results reported by
Angelopolous

FWHM of V, profile and
magnitude comparable
BBF properties

Use code to determine 1f
they result from localized
reconnection or
interchange instability
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LFM-TING Coupling

Solar Wind

Coordinate transfer
Data interpolation

Particle precipitation: F,, E, LI Conductances
W) () ][] W), . @,

Electric potential:

One Way Coupling Two Way Coupling




Conclusions

* Global MHD simulation of the magnetosphere under
1dealized solar wind conditions are proving to be a
useful tool for expanding our understanding the
coupled solar wind — magnetosphere — 1onosphere
system

* The technique 1s expanding into new frontiers

— Jonospheric simulation 1s being replaced with more
sophisticated Thermosphere-Ionosphere Global Circulation
Models

— Modeling of the mmner magnetosphere 1s being enhanced by
coupling with the Rice Convection Model




Conclusions

 LFM 1s highly successful global MHD simulation of
the magnetosphere

— Numerous publications and presentations

— Its design considerations are still relevant today

* LFM is still evolving

— Ports to new platforms and utilization of MPI

— Ionospheric simulation 1s being replaced with more

sophisticated Thermosphere-lonosphere Global Circulation
Models

— Modeling of the inner magnetosphere 1s being enhanced by
coupling with the Rice Convection Model




