Introduction to Magnetohydrodynamic Modeling of the Magnetosphere

M.Wiltberger NCAR/HAO

Outline

- Brief history of global modeling
- Numerical Issues related to MHD Modeling
 - Form of the Equations
 - Computational Methods
 - Parallel Computing
- Global Magnetospheric Modeling Issues
 - Grids and Boundary Conditions
 - MI Coupling
- Validation
- Conclusions and Future Directions

A Brief History of Global MHD Simulations

- 1978 First 2D simulations by Leboeuf et al.
- Early 80s First 3D simulations by Brecht, Lyon, Wu and Ogino
- Late 80s Model refinements including FACs, ionospheres, higher resolution
- 90s ISTP integrates theory and modeling with spacecraft missions and comparisons with *in situ* space and ground observations begun
- Today Global modeling has become integrated part of many experimental studies and we've begun linking models of different regions together

Ideal MHD Equations Non Conservative Formulation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} + \nabla \left(p + \frac{B^2}{8\pi} \right) + (\vec{B} \cdot \nabla) \vec{B} = 0$$

$$\frac{\partial \vec{B}}{\partial t} + \nabla \times (\vec{u} \times \vec{B}) = 0$$

$$\frac{d}{dt} \left(\frac{p}{\rho^{\gamma}} \right) = 0$$

$$\nabla \cdot \vec{B} = 0$$

- No strict numerical conservation of energy and momentum
- Various numerical issues
 - Errors in propagating strong shocks
 - Errors in RH Conditions
 - Incorrect shock speeds

Ideal MHD Equations

Full Conservative Formulation $\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \vec{u}] = 0$

$$\frac{\partial p}{\partial t} + \nabla \cdot \left[\rho \vec{u} \right] = 0$$

$$\frac{\partial (\rho \vec{u})}{\partial t} + \nabla \cdot \left[\rho \vec{u} \vec{u} + \left(p + \frac{B^2}{8\pi} \right) \vec{I} + \frac{1}{4\pi} \vec{B} \vec{B} \right] = 0$$

$$\frac{\partial \vec{B}}{\partial t} + \nabla \cdot \left[\vec{u} \vec{B} - \vec{B} \vec{u} \right] = 0$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla \cdot \left[\vec{u} \left(\rho E + p + \frac{B^2}{8\pi} \right) - \vec{B} \left(\vec{u} \cdot \vec{B} \right) \right] = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$p = (\gamma - 1) \left[E - \frac{1}{2} \rho u^2 - \frac{1}{2} B^2 \right]$$

- Strict numerical conservation of mass, momentum and energy
- Numerical difficulties in low W regions
 - negative pressures possible because p becomes difference of two large numbers

Ideal MHD Equations

Gas Conservative Formulation
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left[\rho \vec{u} \right] = 0$$

$$\frac{\partial (\rho \vec{u})}{\partial t} + \nabla \cdot \left[\rho \vec{u} \vec{u} + \left(p + \frac{B^2}{8\pi} \right) \vec{I} + \frac{1}{4\pi} \vec{B} \vec{B} \right] = 0$$

$$\frac{\partial \vec{B}}{\partial t} + \nabla \cdot \left[\vec{u} \vec{B} - \vec{B} \vec{u} \right] = 0$$

$$\frac{\partial (E_p)}{\partial t} + \nabla \cdot \left[\vec{u} \left(\frac{\rho u^2}{2} + \frac{\gamma}{\gamma - 1} p \right) \right] + u \cdot \nabla \cdot \left[\frac{B^2}{8\pi} \vec{I} - \frac{\vec{B} \vec{B}}{4\pi} \right] = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$p = (\gamma - 1) \left[E_p - \frac{1}{2} \rho u^2 \right]$$

- Strict numerical conservation of mass, momentum and plasma energy
 - Final term in Energy equation is $\vec{j} \cdot \vec{E}$ dotted with velocity
 - no strict conservation of total energy
- No difficulties in low w regions

Time Differencing

- Explicit time differences
 - Predictor Corrector (2nd order accurate)

$$U^{n+\frac{1}{2}} = U^n - \frac{1}{2} \Delta t \nabla \cdot F(U^n)$$

$$U^{n+1} = U^n - \Delta t \nabla \bullet F(U^{n+\frac{1}{2}})$$

Leap Frog Scheme (2nd order accurate)

$$U^{n+1} = U^{n-1} - 2\Delta t \nabla \bullet F(U^n, U^{n-1})$$

• Stability Criterion (CFL Condition)

$$\Delta t_{\text{max}} \leq \frac{\min(\Delta x)}{v}$$

• Implicit Schemes generally not used because soloution of large linear systems becomes too expensive

MHD Numerics

- Need a method to solve the conservative formulation of the MHD equations which maintains the conservation properties
- For this disucssion we'll consider the linear advection equation

$$\frac{\partial U}{\partial t} + \nabla \bullet F(U) = 0$$
$$\frac{\partial U}{\partial t} + v \frac{\partial U}{\partial x} = 0$$

Spatial Discretization

Conservative Finite Difference Scheme

• State variables are cell centered quantities and we discretize our model equation with numerical fluxes through the cell interfaces

$$\frac{dU}{dt} = -(f_{i+\frac{1}{2}}(U) - f_{i-\frac{1}{2}}(U) / \Delta x$$

• Scheme is conservative because

$$\frac{\partial}{\partial t} \iiint_{V} U dV = \iint_{S} F dS$$

Donor Cell

• A simple first order algorithm

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(F_{i-1/2} - F_{i+1/2} \right)$$
$$= u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(u_{i-1}^{n} - u_{i}^{n} \right)$$

- Maintains monotonic solution
- Linear advection problem clearly shows diffusive character

Donor Cell

• A simple first order algorithm

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(F_{i-1/2} - F_{i+1/2} \right)$$
$$= u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(u_{i-1}^{n} - u_{i}^{n} \right)$$

- Maintains monotonic solution
- Linear advection problem clearly shows diffusive character

Second Order

• A simple second order algorithm

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(F_{i-1/2} - F_{i+1/2} \right)$$

$$= u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(\frac{1}{2} \left(u_{i-1}^{n} - u_{i}^{n} \right) - \frac{1}{2} \left(u_{i}^{n} - u_{i+1}^{n} \right) \right)$$

- Does not maintain monotonic solution
- Introduces dispersion errors as seen in linear advection example

Second Order

• A simple second order algorithm

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(F_{i-1/2} - F_{i+1/2} \right)$$

$$= u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(\frac{1}{2} \left(u_{i-1}^{n} - u_{i}^{n} \right) - \frac{1}{2} \left(u_{i}^{n} - u_{i+1}^{n} \right) \right)$$

- Does not maintain monotonic solution
- Introduces dispersion errors as seen in linear advection example

Partial Interface Method

 Combines low order and high order fluxes

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} \left(F_{i-1/2} - F_{i+1/2} \right)$$

$$F_{i+1/2} = \frac{1}{2} \left(u_i^n + u_{i+1}^n \right) + \frac{1}{2} sign \left(u_{i+1}^n - u_i^n \right) *$$

* max
$$(0, |u_{i+1}^n - u_i^n| - Bs_i |u_i^n - u_{i-1}^n|)$$

$$s_{i} = \frac{1}{2} \left| sign(u_{i+1}^{n} - u_{i}^{n}) + sign(u_{i}^{n} - u_{i-1}^{n}) \right|$$

- Limiter to keeps solution monotonic
- Provides nonlinear numeric resistivity and viscosity

Partial Interface Method

 Combines low order and high order fluxes

$$u_{i}^{n+1} = u_{i}^{n} + \frac{v\Delta t}{\Delta x} (F_{i-1/2} - F_{i+1/2})$$

$$F_{i+1/2} = \frac{1}{2} (u_{i}^{n} + u_{i+1}^{n}) + \frac{1}{2} sign(u_{i+1}^{n} - u_{i}^{n}) *$$

$$* \max(0, |u_{i+1}^{n} - u_{i}^{n}| - Bs_{i} |u_{i}^{n} - u_{i-1}^{n}|)$$

$$s_{i} = \frac{1}{2} |sign(u_{i+1}^{n} - u_{i}^{n}) + sign(u_{i}^{n} - u_{i-1}^{n})|$$

- Limiter to keeps solution monotonic
- Provides nonlinear numeric resistivity and viscosity

Treatment of the Magnetic Field

- Various approaches can be used to satisfy the constraint that $\mathbb{W} \mathbb{B} = 0$
 - Projection method

$$\nabla^2 \Psi = -\nabla \bullet \mathbf{B}$$

$$\mathbf{B'} = \mathbf{B} + \nabla \mathbf{\Psi}$$

- W B convection
 - Modify the MHD equations so that WB convects through the system

$$\frac{d(\nabla \bullet \mathbf{B})}{dt} = 0$$

Use a magnetic flux conservative scheme that keeps
▼ ▼ B=0

Magnetic Flux Conservative Scheme

- Magnetic field placed on center of cell faces
- Electric field is placed at center of cell edges so that

$$\frac{\partial}{\partial t} (B_{x})_{i+\frac{1}{2},j,k} = \left[(E_{y})_{i+\frac{1}{2},j,k+\frac{1}{2}} - (E_{y})_{i+\frac{1}{2},j,k-\frac{1}{2}} \right] / \Delta z - \left[(E_{z})_{i+\frac{1}{2},j+\frac{1}{2},k} - (E_{y})_{i-\frac{1}{2},j+\frac{1}{2},k} \right] / \Delta y$$

• Cancellation occurs when field components of all six faces are summed up

Computation Grids

- Simulation boundaries should be in supermagnetosonic flow regimes
 - → 18 Re from Earth on Sunward side
 - ≥ 200 Re in tailward direction
 - ≥ 50 Re in transverse directions
- A variety of grid types exist with varying degrees of complexity
 - Uniformed Cartesian
 - Stretched Cartesian
 - Nested Cartesian
 - Regular Noncartesian
 - Irregular Noncartesian

Uniformed Cartiesian Grid

- Low programming overhead
- Low computing overhead
- No memory overhead
- Easy parallelization
- Not very adaptable

- Stretched Cartesian Grid
 - Low programming overhead
 - Low computing overhead
 - No memory overhead
 - Easy parallelization
 - Somewhat adaptable
 - Example from Raeder UCLA MHD Model

BATS-R-US

• Nested Cartesian

- Medium/High programming overhead
- Medium/High memory overhead
- small computational overhead
- difficult to parallelize
- very (self) adaptable
 - Example from BATS-R-US

Regular Noncartesian

- Medium programming overhead
- Low memory overhead
- small computing overhead
- parallelizes like regular cartesian grid
- somewhat adaptable
 - Example from LFM

Domain Decomposition

- Computational Space is divided (evenly?) amongst the CPUs available to work on the problem
 - MPI used to pass boundary information between ghost cells at interfaces
 - Can also use packages like MultiBlockParti and P++

Boundary Conditions

- Upstream
 - Fixed or time dependent values for 8 plasma parameters
 - Can be idealized for derived from solar wind observations
 - Problem with B_X
 - Need to know 3D structure of solar wind because

$$\nabla \bullet \mathbf{B} = 0 \iff \mathbf{n} \bullet (B_{upstream} - B_{downstream}) = 0$$

- Implies $B_X = B_N$ cannot change if solar parameters are independent of Y and Z
- Find **n** direction with no variation and then sweep these fronts across front boundary

Boundary Conditions II

- All other sides
 - Free flow conditions for plasma and transverse components of B

$$\frac{\partial \Psi}{\partial \mathbf{n}} = 0$$

- normal component of B flows from ₩ W B=0
- Inner Boundary Condition
 - MI Coupling module
 - Hard wall boundary condition for normal component of velocity and density

Magnetosphere-Ionosphere Coupling

- Inner boundary of MHD domain is placed between 2-4 $R_{\rm E}$ from the Earth
 - High Alfven speeds in this region would impose strong limitations on global step size
 - Physical reasonable since MHD not the correct description of the physics occuring within this region
 - Covers the high latitude region of the ionosphere (45 🖫 90 🖼)
- Parameters in MHD region are mapped along static dipole field lines into the ionosphere
- Field aligned currents (FACs) and precipitation parameters are used to solve for ionospheric potential which is mapped back to inner boundary as boundary condition for flow

$$\mathbf{v} = \frac{(-\nabla \Phi) \times \mathbf{B}}{R^2}$$

Ionosphere Model

- 2D Electrostatic Model

 - _ w=0 at low latitude boundary of ionosphere
- Conductivity Models
 - Solar EUV ionization
 - Creates day/night and winter/summer asymmetries

$$\Sigma_p = 0.5 F_{10.7}^{2/3} (\cos \chi)^{2/3} \quad \forall \quad \chi \le 65^{\circ}$$

$$\Sigma_H = 1.8 F_{10.7}^{1/2} \cos \chi \qquad \forall \quad \chi \le 65^{\circ}$$

- Auroral Precipitation
 - Empirical determination of energetic electron precipitation

Auroral Precipitation Model

- Empirical relationships are used to convert MHD parameters into an average energy and flux of the precipitating electrons
 - Initial flux and energy

$$\varepsilon_o = \alpha c_s^2$$
 $\phi_o = \beta \rho \varepsilon_o^{1/2}$

Parallel Potential drops (Knight relationship)

$$arepsilon_{\parallel} = rac{RJ_{\parallel} arepsilon_o^{1/2}}{
ho}$$

$$\varepsilon = \varepsilon_o + \varepsilon_{\parallel}$$

Effects of geomagnetic field
$$\phi = \phi_o \left(8 - 7e^{\frac{-\varepsilon_{\parallel}}{7\varepsilon_o}} \right) \ \forall \ \varepsilon_{\parallel} > 0$$

$$\varepsilon = \varepsilon_o + \varepsilon_{\parallel}$$

$$\phi = \phi_o e^{\frac{\varepsilon_{\parallel}}{\varepsilon_o}} \ \forall \ \varepsilon_{\parallel} < 0$$

Hall and Pederson Conductance from electron precp (Hardy)

$$\Sigma_{p} = \frac{5\varepsilon^{3/2}\phi^{1/2}}{(1+0.0625\varepsilon^{2})} \qquad \Sigma_{H} = 0.45\varepsilon^{0.85}\Sigma_{p}$$

Pretty Picture Time

• A whole lot of coding later and you get

Methods of Model Validation

- Conduct studies with same conditions and different numerics
- Computation of theoretical problems with known analytic answers
 - Provides a ground truth that code is working
 - Very limited number of MHD problems
- Direct comparison with observations
 - Limited number of spacecraft observations
 - Check general characteristics with superposed epoch studies
 - Include comparison with indirect observations
 - Use metrics to quantitatively asses validity

Effect of Numerics on Magnetosphere

- Simulation for Northward IMF with constant Pedersen Conductance
 - Background color velocity with white magnetic field vectors

- High Numerical Diffusion
 - 8th Order
 - No TVD Scheme

- Low Numerical Diffusion
 - 8th Order
 - High TVD Scheme

Effect of Numerics on Ionosphere

- Simulation for Northward IMF with constant Pedersen Conductance
 - Background color FAC strength with potential contours overlaid

- 8th Order
- No TVD Scheme

- Low Numerical Diffusion
 - 8th Order
 - High TVD Scheme

Energy loading and unloading

- Both data and simulation show onset, intensification, recovery, and second onset
- Simulated onset is early, but intervals between intensification and second onset are consistent
- Simulated CL recovers faster than observations

Medium Skill Case 1

DMSP data-model comparison a1398310.154

Ridley: 0.32

Rice: 0.32

Slinker: 0.23

Weimer: 0.43

Spatial structure details not reproduced
More detail (Rice, Slinker) does not necessarily lead to higher skill,
although it is desirable

Comparison with geostationary observations

- Excellent agreement for all three components of B
- Despite global B_Z offset dipolarizations of similar size are seen in simulation results for both GOES 8 & 9
 - May imply limited role for ring current in substorms

Flow Channels

Comparison between Flow channels and BBFs

- Flow channels have properties similar to BBF results reported by Angelopolous
- FWHM of V_X profile and magnitude comparable BBF properties
- Use code to determine if they result from localized reconnection or interchange instability

Conclusions

- Global MHD simulation of the magnetosphere under idealized solar wind conditions are proving to be a useful tool for expanding our understanding the coupled solar wind magnetosphere ionosphere system
- The technique is expanding into new frontiers
 - Ionospheric simulation is being replaced with more sophisticated Thermosphere-Ionosphere Global Circulation Models
 - Modeling of the inner magnetosphere is being enhanced by coupling with the Rice Convection Model

Conclusions

- LFM is highly successful global MHD simulation of the magnetosphere
 - Numerous publications and presentations
 - Its design considerations are still relevant today
- LFM is still evolving
 - Ports to new platforms and utilization of MPI
 - Ionospheric simulation is being replaced with more sophisticated Thermosphere-Ionosphere Global Circulation Models
 - Modeling of the inner magnetosphere is being enhanced by coupling with the Rice Convection Model